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Abstract—The dynamic equations for a two-link flexible robot arm have been derived rigorously. The arm
is moving in the vertical plane. The payload is simulated by attaching additional masses to the arm at
any specific locations. Although the governing equations of the system and the measurements are
nonlinear, they are explicitly obtained. The control strategy and the general procedures to construct a
linear observer and to formulate a control law are discussed.

1. INTRODUCTION

Most of today’s analyses and controls of industrial
robots are based on the assumption that the robot
arm is just a collection of rigid bodies so that, after
the joint angles are driven to assume the pre-
computed values, the end effector of the robot arm,
by dead reckoning, will be in the intended position.
Therefore, most of the robots are built to be massive
and unwieldy.

Clearly, it is desirable to build lightweight robot
arms which have a large working volume, high
mobility and the capability to carry heavy payloads.
In order to meet these requirements, the robot arm
has to be flexible, in other words, the rigid-body-
assumption in robotics has to be abandoned. Then
the deflection and the vibration of the robot arm
present a severe problem to the accuracy and the
stability in positioning. Therefore the control of
flexible manipulators is becoming a critical issue in
robotics.

Cannon and Schmitz[1] published the pioneer
work in the area of control of flexible robot arms, in
1984. In that work the mathematical modeling and
the initial experiments have been carried out to
address the control of a one-link flexible robot arm
where the position of the end effector (tip) is con-
trolled by measuring that position and using the
measurement as a basis for applying control torque
to the other end of the arm (joint). Also, it is
worthwhile to mention the works of Harashima and
Ueshiba [2], Wang and Vidyasagar (3, 4), Sangvera-
phunsiri [5], and Book ez al. [6). In all those works
there are two things in common: the one-link robot
arm, with its hub rotating about the z-axis, sweeps
the horizontal x—y plane; the flexible arm is modeled
as a beam whose deflection is represented by a
series in terms of eigenfunctions (normal modes).
Lee et al.[7], Lee and Wang [8] rigorously derived
the dynamic equations and designed the control
system for a one-link arm which has two degrees of
freedom in rotation and one in translation so that
the working volume of the end effector is a three-

dimensional space instead of a cycle on the horizontal
plane. Usoro er al.[9] presented a finite element/
Langrangian approach for the mathematical
modeling of a two-link flexible manipulator.

In this work the dynamic equations for a two-link
fiexible robot arm, moving in the vertical (x—z) plane
are rigorously derived. The payload is simulated by
attaching additional masses to the arm at any
specified locations. Finite element method, based on
elementary beam theory, has been employed during
the process of formulation. The explicit form of the
nonlinear governing equations for the mechanical
system has been obtained. It is assumed that the
position of the end effector can be measured and only
the information of that measurement will be used as
a feedback to the control system. The genera! pro-
cedures to construct a linear observer and to formu-
late a control law are discussed. However, how to find
the control gain matrix and the estimate gain matrix
is left for future study.

2. PROBLEM DESCRIPTION

The undeformed configuration of a two-link robot
arm is shown in Fig. 1. In this work it is considered
that the motion of the arm is confined in the vertical
plane, i.e., the x—z plane. It is seen that in Fig. 1, the
upper arm makes an angle ¢ with respect to the
z-axis, which is opposite to the direction of gravity,
and the angle between the upper arm and the lower
arm is denoted by y. The original lengths of the upper
arm and the lower arm are denoted by /' and /%,
respectively. The deformed configuration of the two-
link robot arm is shown in Fig. 2. Define two new
coordinate systems, (x', z') and (x2, z?) as shown in
Fig. 2, such that the x'-axis and the x’-axis are
parallel to the tangents of the upper arm and the
lower arm at the origin and at the joint between
the two links, respectively. Let the angle between the
x?-axis and the z-axis be denoted by f. Model the
upper arm and the lower arm by n beam clements
and m beam elements, respectively. Then there are
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Fig. 1. The undeformed configuration of a two-link robot arm.

n +m + 1 nodal points and each is associated with a
lumped mass. The payloads may also be simulated by
the masses attached to some nodal points. From now
on, unless otherwise stated, the lumped mass at any
nodal point stands for the sum of the payload carried
at the point and the mass of the beam distributed
to that point. The position vector of the generic ith
nodal point (i=0,1,2,...,n) of the deformed
upper arm can be expressed in the (x', z') coordinate
system as

X = (x},2])= (X, U}), )

where U! is the displacement of the ith nodal point
in the direction of z'-axis and the lumped mass at this
point is denoted by M ; Similarly, the jth nodal point
(j=1,2,...,m)of the deformed lower arm occupies

x}=(x2,22) = (X}, U}); 2

and the lumped mass at this point is denoted by M?.

3. TRANSFORMATIONS

The position vector for any point on the upper
arm, expressed in the global coordinate system (x, z),

may be obtained as
—coso |[ X!
sin ¢ U!

=
-o[l]-ex

It is noticed that Q' is an orthogonal transformation
matrix which has the following property

3

Q@) '=@QY. “)
In other words, any vector V, in the global coordinate
system, can be transformed into V', in the (x',z')
coordinate system, through V' = (Q')"V.

»> X
Fig. 2. The deformed configuration of the two-link robot arm and the coordinate systems.
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Now the velocity and the acceleration can be
obtained as

[X] [ dcos¢ ésing][x 0
I Rexrpsd LIPS

= le +lel, (5)

h

dcosd —pdsind ¢ sing + ¢ cos ¢
~¢sing —ppcosd ¢ cosd — ¢ sing

Xxi s 0
x [U'] +2Q'v' + Q'[U,]
=Q'x' +2Q'v' + Q'a’. (6)
The position vector of any point on the lower arm,

expressed in the global coordinate system (x, z), may
be obtained as

_[x]_[sinp —cosp Xx?
=17 cosp sing || U?
sing —cos¢ |[ I
+ cos¢ sing ] U']
=Q’x’+Q'x,, ¢
where

U*=Ul. (8)

Then the velocity and the acceleration can be ob-
tained as

v=Q@x+ Qv +Q'x; +Q'v,, ©®
a=@Fx+2Q°v + Qa2+ Q'x!
+2Q'v! + Q'al, (10)

where

0
v’s[U{], .25[32], an
v,‘,s[l?_:l, a,’,s[(?‘]. (12)

4. INERTIA FORCE AND GRAVITY

The total force acting on a generic point is equal
to the sum of the inertia force and the gravitational
force acting on the point, i.e.,

f= —Ma—Mg[(:]. (13)

The total force acting on the ith nodal point of
the upper arm, expressed in the (x',z') coordinate
system, can be calculated as

fi=Q"f,
= —M,‘(Q‘)T[Q’x‘ +2Q'v' + Q'a' + [Z]:I
(14)
Explicitly, eqn. (14) can be rewritten as

fix)=~M![U\¢ —X!éé +2U!¢ +g cos ¢},
4.1

fi@)=-M[U]-X!$ ~ Ul$$ +g sin¢].
(14.2)

The total force acting on the jth nodal point of the
lower arm can be expressed in the (x', z') coordinate
system and the (x?z?) coordinate system, re-
spectively, as follows

f}l = —M}(Q')T[szz+ 202v2+Q2.2
+Q‘x:+2Q'v:+Q‘a:+[g]], (15)
(= —M}(Q’)’[Q’x’+2()zv2+Qzaz

. 0
+Q'x! +2Q'v) + Q'a) + [g:”. (16)
Explicitly, eqns (15-16) can be rewritten as

(x)= —MU*$ —I'ép +2U%$ +gcos ¢
+SU? + 2CPU + (- SX} + CUDE
—(CX? + SUHBB], (15.1)

A(z)= —MIU* ~I'¢§ —U*$d +gsin ¢
+ CU? —2SBU? - (CX? + SUHE
+(SX? — CUNBB), (15.2)

SB(x)= —M[Uf — X?Bf + 203 + g cos B
—SU*+2CU*¢ + (SI' + CU*¢
—(CI' = SU%)é¢), (16.1)

2(z)= —M?[U? - X}F — Uff +gsin B
+CU +28U*¢ — (CI' - SU*¢
—(SI' + CU*)¢$), (16.2)
where C =cos(f — ¢) and S =sin(f — ¢).

The total force acting on the lower arm is equiv-
alent to a force in the x'-direction, F,, a force in the
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Fig. 3. The forces and moment acting on the two cantilever
beams.

z'-direction, F,, and a bending moment, T, acting at
the joint between the upper arm and the lower arm
(cf. Fig. 3). These resultant forces and moment may
be written as

Fo=3 f2(x)

J=1
=T (U*¢ —1'¢6¢ +2U*¢ +g cos )

— ¥ MISU? + (= SX? + CUMB +2CBU2

J=1

—(CX? + SUHBB), an

WO
=-IU*-1I'¢ - U*d¢ +g sin )

— 5 MICU? - (CK? + SUP)f — 2540

Jj=1

+(SX? - CUHBB), 18)

I,= Z. P @)X} - fR(x)U]]

=Y M}X:U+(CX: + SUHU*

j=1
—(CI'X} — SU*X} + SI'Ul + CU* U3¢
~ (X} X} + UJUDE +20%(SX? ~ CUH
—2U U + (sin BX? — cos BU?)g
~(SI'X? + CU* X} ~ CI'U} + SU* UN)é ),
19)
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where

Similarly, the total moment acting on the origin, T,
can be obtained as

Ty= 3 UK —fIGUl+ Fl - RUS+ T,
- -5 MIXIU - i+ e
Ly
—(CI'-SU" § M30?
j=1

+ $[r(1'1'+U'U')+ ): MIXIX'+U! U,’)]

il

+ ﬁ’{ }i MZ((CI'-SU*)X? + (SI'+ a'/)u}]}
j=1
-g[l”(l’sin¢—U‘cos¢)
+ f._: M}(sin¢X}—oos¢U})]
i)

+245(I‘U‘0‘+ ¥ MlU! 0,!)

im]

+28(SI'+CU% ¥ M2U?

Jj=1

+ /iﬁ'{ i ME[(CI' — SUMU?
Jj=1

~(SI'+ CU‘)X}]} + T, (20)

Now, the two-link robot arm can be treated as two
cantilever beams on which the forces and moment,
due to inertia force and gravity, are acting, as shown
in Fig. 3.

S. FINITE ELEMENT ANALYSIS

Following standard procedures in finite element
analysis {10, 11, 12] and the ¢lementary beam theory,
one may obtain the governing equations for the lower
arm (beam 2), which is treated as a cantilever beam,
as follows [7]

KU =12 (21)

where
U= (U3, UR, UL,..., U2, 22)
2=(fE2@), 2@, [PQ),.... 2N, @3)
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and K? is the (m x m) stiffness matrix for a cantilever A= 2 24 pr2n
beam subjected to applied forces only. For the upper = ,;, Mjixjx}+ UpUj), (7.2
arm (beam 1), because there is a bending moment, T;,
acting at the free end of beam 1 (cf. Fig. 3), following 4 = ¥ a1ty y! 4 Ut L
the same procedure outlined in[7), the governing 35,; XX+ ViU
equations may be written as
+rp+uus), (371.3)
K Kju f
2l S EY F a3
2 A,=-C ):| M:X -SY MIUZ, (37.4)
j= =1
where !
A;=('C-U* 2 x2
U's (UL UL UL, UL, @ B=¢ LMY,
(g 1 1 1 1 m
F=("@LS:E0f3@). ... [12)+F), (26) +{'S+U*C) Y MIU?, (31.5)
j=1
and s is the slope at the free end of beam 1; K’ is a _ 3
(n x n) matrix; K is a vector of length n and it can ¢, =CMj, G8.1)
be written as (X, K;, K, ..., K,)". By eliminating s _ 2 v2
from eqn (24), the following is obtained o= —M;Xj, (38.2)
K'U =f —KT,/k, @n S=MjUTS-1'0), (38.3)
where pi=Y KUl —Mgsing + MU b¢
j=1
K'=K —KK/k. 28
e @) ~ KT, (39)
Now eqns (21, 27, 19, 20) may be rewritten in a more -
compact form as follows q=- '2] KiU?—Mlgsinp —2SU* M}
j-
a, 0 b o712 142 . TP
0 a ¢ o=A*o=0 (29) + BBUIM; + (SI' + CU*)¢pM ], (40)
b’ ¢ a, » .. '
n=—2 KyUl+ (M, +TYU*$¢ — (K, /k)T,
where j=1
o=(ULUL,... U\, U, U3, —(Ml+T)gsing +28f Y M2U?
UL UL B, 8, (30) o
_ R T 2 _ 2 2
», = diag{M}, M}, M}, ..., M}_,), @1 B ¥ (SX} - CUHM}, @11
= di 2 ag2 2 2 -
a, =diag[M{ M, M:, ..., M), (32) y;=T2+glz M}(sinﬁX}—cosﬂU})
A, A, ~D'4, =
n=| A, A, A | (33 ved T Af2CY? 2
+2U MASX; - CU
—IIAI As A3 ¢j-zl J( ! J)
0 0 0 0
b = 0 0 0 0 , (34)
-MiX] -MiX; —-MiX; -+ -M, X,
€y € C3 " Oy 4 ag272072
=lcy en ey Gl (35) —zﬂ,-_zl M; Ui
Cy €3 C3 """ Oy

— 46 S MASI'X? *x?
Q=01 Pr1: 4G22 Qs V1 V2o 1) (36) “,;, M (STX;+ U,

A=M\+T, (31.1) — CI'U? + SU*U?), (41.2)
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7:=Tx—Tz+g[r(1'ﬁn¢—U'0°S¢)

+ i M!(sin ¢p.X! —°0$¢U,!)]

-2¢ (I"U‘U‘ + Y M!U! U,!)

—2B(SI'+ CU*) ¥ M2U?

Jj=1

—Bﬂ'{ 3 M3(Cl' - SUMU?
i=1

—(SI'+ cu')x}]}. @1.3)

6. THE INVERSE OF A4*

In order to proceed with the derivation, it is
necessary to write eqn (29) in the following form
@ = A0, (42)
in other words, it is necessary to find the inverse of
A*. However, it is seen that 4* is a function of dis-
placements, U}, U},..., UL, U3, U3,..., U2, and
joint angles, B and ¢, which are time-dependent.
Certainly, it is much more desirable if one is able to
invert A* analytically rather than numerically. For-
tunately, the (n + m + 2) x (n + m + 2) matrix A can
be calculated through the following steps. First,
define several variables as

a, =M.+ SSTI 43.1)
a,=— SZ M} U}, 43.2)
j=1
a,=—M\I'~ST('S + U*C), (43.3)
an= S MIUUZ, 43.4)
j=1
az,E(I'S+U‘C)Z MU, (43.5)
j=1
a,=('S+U*CYI'S + U*C)r
+MII''+ ¥ MIUIUL, (43.6)
=1
ay = ay — a),a,/a), (44.1)
a3 =ay—apa;/a), (442)
@33 = a3 — a13a;3/6), — @45 /a%, (44.3)
b = —ayp/a,, @s.1)
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b= —ay/a, - bay/ay, (45.2)
by= —ajfay,. (45.3)
Second, define a vector V,(k=1,2,3,...,

n+m +2), of length (n + m + 2), as follows: V, =0
except that

MDfork=n+m+2

Vitn+m+2)=10, (46)
@) fork=n+m+1

Vir+m+1)=10, Vi(n+m+2)=b,, (47)
@B)Yfork=n+m

Vilm+m)=10,V,(n+m+1)=5,,

Vitn +m +2)=b,, (48)
@4 fork<n-—1

Vitk)=10, Vin+m+2)=Xx), (49)
(S)forn<k<n+m

Vik)=10, V,(n+m)=—C,

Vim+m+1D=Xx}_,.,—-bC,

Vim+m+2)=1'C-U*S

+ 85X .1 —b,C. (50)

Now, the kth column of matrix A can be obtained as

Aln+m+2,k)
=V, (n+m+2ap=e,
An+m+1,k)
=[Viln+m+1)—ayelan=e,
A(n+m,k)
=[Vi(n + m)—a;e, —ape)a, =e;,
Al k)
=Vi)IM} ., ~Ces+ Xi_,.16

—(U*S=1I'C)e;, n<l<n+m

Al k)
=V,(h/M}+ Xle,, I<sn—1. (51
Therefore, one may write symbolically that
A = Alw] (52)



Dynamic equations for a two-link flexible robot arm

to indicate the matrix A may be expressed explicitly
as a function of @ [cf. egn (30)].

7. TARGET

Consider the displacements and the joint angles, o,
as the state variables and the torques, T, and T}, as
control variables of the system. The purpose of the
control is to find the control law that makes the
system converge to a steady state which meets certain
prescribed requirements. If the solutions are con-
verging, then, as time approaches infinity, the time
derivatives of all the variables approach zero, i.c.,

lim @ = lim [U}(?), Ui, ...

t=c

L U, UR), . BG), (1))

=[UV,UY,..., UV, UY,...
B l=w/ (53)
In other words,
Qlw/}=0, (54)

which, according to eqns (36, 39, 40, 41), implies

S KLU = —(K,/k)T4— M? g sin ¢/,

j=1

. n) (53

Y KiUY=Mgsinp/, (i=12,...,m) (56)

im

Ti=g Y M}[UYcos B/~ X?sin B/}, (57)

i=1

T = T{—g[l‘(l' sin ¢/ — U cos ¢/)

+ i MI(X!sin ¢/ - U,”cosd)’)], (58)

where M*=M) for i=1,2,...,n—1 and M*=
M) + I'. The iterative procedure to solve for @/ may
be described as follows. First, give trial values for
B/ and ¢’. Based on eqn (56), solve for U?/
(i=1,2,...,m) and then T{is calculated according
to eqn (57). Now U}/ (i=1,2,...,n) can be ob-
tained by solving eqn (55). Finaily, 7{ can be cal-
culated from eqn (58). In order for the end effector
to reach the given target position (x',z'), eqn (7)
requires that

x'=1sinp/ - U cos B/

+1'sin ¢/ — UV cos ¢, (59)
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z'=1cos p/+ U/ sin B/
+ ' cos ¢/ + Ul/sin ¢/, (60)

which means w/, T{, and T{ may be determined by
eqns (55-60).

Define the incremental state variables and the
incremental control variables as

Aw = (U= UV, U= UY, ..., UL, — UV,

LB~B.¢ -9

=(AUL, AU, ..., AU AUL, ..., AB, Ad),
61.1)

U3-uy,..

AT=AT,, ALY =(T,-T{, T,-T{)". (61.2)

Then eqns (39-41) can be rewritten as

= z K;,'AU} — (K, /k)AT,

jm
- Migcos¢/A¢ +p!

=pt+pl, (i=12,...,n-1) (39%)

gi=— Y KiAU}— Migcos p/AB + g7

j=1

=qi+ql, (i=12...,m) (40%)

h=— z K.’VAU} — (K, /k)AT,
j=1
— (M, + g cos ¢/Ap + 7}

=yt 4ot @11%

y2=AT,+g Y M?((cos B/X?}

J=1
+ sin B’U}I)A,B —cos ﬂfAUf] +y¥
=y;+73, (41.2%)
73=AT, — AT, + gI'{(! cos ¢’

+ U}/ sin ¢/)A¢ — cos $/AU})
+e i M![(cos ¢’ X} +sin ¢/ UV)A¢
im|

—cos /AU + y¥

=y +74, (41.3%)
where the nonlinear parts, p», ¢¥, 9V, ¥, 1Y, can be
casily obtained by examining eqns (39-41, 55-58, 61,
39°-41*).
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From now on, the governing equation of the
system, eqn (29), may be written symbolically as

A*Ax =FAw + GAT + N, 62)
where F is a constant (n + m + 2) X (n +m + 2) ma-
trix; G is a constant (n +m + 2) x 2 matrix; and N
stands for the vector, of length n +m + 2, of non-
linear functions. One may also rewrite eqn (62) as

Ao = A(FAw + GAT + N). (63)

It is noticed that so far no approximation whatsoever
has been made and the order of the nonlinear func-
tions, N, is higher than or equal to two.

8. THE MEASUREMENTS

It is assumed that the position of the end effector,
(x*, z*), can be measured. The difference between the
end effector and the target position can be obtained
as

o, =x*—x'
= P*(sin B — sin /) + I'(sin ¢ —sin ¢”)

~cos pUZ + cos B/U% — cos ¢U!

+cos ¢/ U/, (64)
b,=z*—2
= I*(cos B — cos B/) + I' (cos ¢ — cos ¢/)
+ sin U2 — sin p/U% + sin ¢ U
—sin ¢/ UV, (65)

It is seen that § is a nonlinear function of the state
variables. If a Taylor series expansion of & is per-
formed about the final position, the linear expressions
of é are obtained as

8.~ Pcos B/AB + 1' cos p/Ad

+sin B/ U/ AB +sin ¢/ U/ Ag

—cos /AU — cos ¢’AU, (66)
6, ~ —Psin B/AB ~ I' sin ¢’Ad

+cos BfUXAB +cos ¢’ U AP

+ sin B/AUZ + sin ¢/AUL. 67)

Now, the governing equations and the measurements
of the system in linear form can be symbolically
written as

Ao = A’FAw + A/GAT, (63%)

Jamzs D. Lee and BEN-L1 WANG

é = Hho, (66*, 67*%)

where
A= A["’flo
and H is a constant 2 x (n + m + 2) matrix. Based on

the constant matrices, A’F, A’G, H, a linear esti-
mator can be constructed for the purpose of control.

(68)

9. DISCUSSION

It is noticed that, in the works of Lee e al. [7], Lee
and Wang (8], for the control of a flexible robot arm,
as well as in this work, the equations of the system
and the measurements may be symbolically written as

ad =Y(a, u), (69)

§=68(), 70)
where a is a vector of state variables (x = [Aw, A®]”
in this work), u is a vector of control variables
(u=[AT,,AT;)" in this work);, & is the measure-
ments—a nonlinear vector function of the state vari-
ables; Y is a nonlinear vector of function of the
state and the control variables; Y and 6 may be
written as

¢ =Pa +Ru+Y¥a,n), an

8 =Ha + 6%(a). (72)
In eqns (71-72), P, R, H are constant matrices; Y
and 8" are nonlinear functions. Let & stand for the
state variables of the estimator (observer) and let the
observer and control law be expressed respectively as

d =Pé + Ru + L(5 — Hd), (73)

w= —-Jd, (74)
where L is the estimate gain matrix and J is the
control gain matrix. The gain matrices, L and J, may
be constructed based on P, R and H by using the
pole-replacement method [13, 14], or by applying the
optimal control theory[13, 15}.

In this work, the detailed expressions of P, R, H,
Y” and 8" have been derived rigorously for a two-
link flexible robot arm moving in the vertical plane.
If the system and the measurements had been linear,
i, Y"=8%=0, then any properly obtained gain
matrices, L and J, would have guaranteed the con-
vergency and the stability of the solutions, in other
words, the end effector eventually wouid have
reached the target asymptotically. Because the system
and the measurements are nonlinear, it is necessary to
divide the processes of control into a first stage coarse
control and a last stage fine control {7, 8]. A relatively
simple coarse control law will bring the end effector
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to the neighborhood of the target and then the fine
control law is activated to stabilize the whole system.
Although finding the detailed expressions of the gain
matrices is left for future study, we feel that there is
no major difficulty in doing so by using the pole-
placement method or by applying the optimal control
theory.
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